Runtime Configuration for MPC - User Manual

Sogeti High Tech
September 11, 2013

Contents

1 Introduction 1
2 The configuration file structure 1
3 Define a configuration file 1
3.1 Definingprofiles L 1
3.1.1 Step 1: Defineadefaultprofile 1

3.1.2 Step 2: Define a profile fordebugging Lo 2

3.2 Mappingprofiles L e 2

4 Configuration test 2
4.1 Simple execution without parameterso 3

4.2 Executionindebuggingmode 3
4.2.1 Using the environment variable MPC_.DEBUG 3

4.2.2 Using the option —profilesof mpcruno 3

4.2.3 Using the environment variable MPC_USER_.PROFILE 3

4.3 Simple execution with parameters.. 3

5 Network configuration 4
6 The configuration editor 6
6.1 Profilesdisplaying e 6
6.2 Networksdisplaying e 7
6.3 Mappingsdisplaying e 8
6.4 The XML generatedfile e 8
6.5 Messagesconsole e 9

7 Helpful commands 10
7.1 mpeprintconfig L L L e e e e 10
7.2 mpceditconfig 10

1 Introduction

Since MPC 2.4.1, a configuration system has been introduced through the module MPC_Config: it enables the
user to setup some parameters at the runtime when running his binary with MPC.

This manual will explain to an user how he can use and modify the configuration for running his applications with
mpcrun.

2 The configuration file structure

In MPC 2.4.1, some variables can be configured during the runtime. To do this, a configuration file defines all the
variables and their values, and MPC will load it at the execution.

An example of a configuration file can be found in the SPREFIX/share/mpc folder, where SPREF IX matches
to the install directory of MPC.

The configuration file is written in XML, and two parts make up it:
1. A first one listing all the available profiles and their associated parameters;

2. An other one defining which profiles to apply at runtime depending on the values of environment variables.

3 Define a configuration file

3.1 Defining profiles

In this manual, and to illustrate the configuration system, we will define two profiles: the default one and an other for
debugging.

3.1.1 Step 1: Define a default profile

A configuration file must have a default profile (see XML just beyond): it initializes all the variables of the configuration
system with their default values.

Example of default profile

This simple example defines three variables for a module called 1auncher, and two forallocator.

The parameters inside a module can be of different types (matching to C types) :
e Numbers such as integers, doubles, etc.;
e String;

e Size (i.e. 50 MB, 10 PB, etc.);

Boolean (true or false);

e Enum;

® N o o A W N =

e Function Pointer.
All the parametrizable variables can be listed by executing the command man mpc_config: it gives information
(type, default value, description) for each variable.
3.1.2 Step 2: Define a profile for debugging

To debugging applications, some parameters need to be initialized with different values than the default profile ones.
So the user can defined a new profile as beyond:

Example of debug profile

While the default profile must have default as name, the name of this new profile has no importance: to be
coherent with our example, we call it debug. Selecting this profile will overwrite the default values with those ones.

3.2 Mapping profiles

One way to select the profiles to apply during execution is to define mapping in the configuration file. The XML
code beyond will enable the user to select the debug profile depending on the value of the environment variable
MPC_DEBUG.

Example of mapping to apply debug profile

The user can define multiple mappings which will be surrounded with <mappings>...</mappings>. By
default, the default profile is applied which means that if the user does not defined any mapping, the variables
into the configuration will be initialized.

4 Configuration test

MPC will use many configuration files that it will apply in the following order:
1. SPREFIX/share/mpc/config.xml;
2. SPREFIX/share/mpc/config.xml.example if the previous file does not exist;
3. the file given by the parameter ——config of mpcrun if present.

As an example, let's assume an executable called test: its goal is to simply print the values of the variables which
are in the configuration system.

L N . N T S

® N ® o A W N =

©® N o o A W N =

4.1 Simple execution without parameters

If the binary test is simply called executing the command . /test, the ouput is:

Output of a simple execution

If nothing is precised, the default profile will be loaded at execution.

4.2 Execution in debugging mode
4.2.1 Using the environment variable MPC_DEBUG
If the user executes the command MPC_DEBUG=true ./test, this will enable the debug profile:
1. the values of the default are first loaded;
2. all the variables redefined in the debug profile are overwritten, and all the others keep their previous values.

The output of this command is:

Output when enabling the debug mode

4.2.2 Using the option —profiles of mpcrun

The user can also precise the profiles he wants to apply using the option ——profiles of mpcrun.

The command mpcrun —--profiles=debug ./test produces the same output as in §4.2.1.

4.2.3 Using the environment variable MPC_USER_PROFILE

The user can also precise the profiles he wants to apply using the environment variable MPC_USER_PROF ILE.
The command MPC_USER_PROFILE=debug ./test produces the same output as in §4.2.1.

4.3 Simple execution with parameters

If an argument is passed to the executable, it will overwrite the values put in configuration for the associated variable.
For example, if the argument —n=3 sets the number of nodes, the command . /test -n=3 outputs:

Simple execution with parameters

5 Network configuration

The network that will be used during the execution can also be parametrized into the configuration file between the
tags <networks>...</networks>. For the moment, MPC 2.5.0 only supports Infiniband and TCP.

The first step is to defined all the network configurations available:

Define network configurations

Next step is to defined the different rails which will use the previous network configurations. A rail consists in a
specific topology to use, and one of the defined configurations.

Define network configurations

The final step is to defined the different options that the user can choose with the option ——net of mpcrun.

Define network modes

o g o~ @ N =

The configuration system allow the user to define multirail by selecting many rails for a network mode. Using the
previous code, the options for the option ——net are ib, ib and tcpoib.

6 The configuration editor

The figure 1 shows the editor interface as the user will see it at launching.

Configuration file: Browse_ @

¥ Profiles: ®
Mo foaded configuration file.

¥ Modules
No loaded configuration file

¥ Networks:
Mo loaded configuration file.

¥ Mappings:
No loaded configuration file. @

v Generated configuration file
Mo loaded configuration file @

Messages console

Figure 1: Editor interface at launching

The interface is divided in several parts:

1.

2.

6.1

Loading of an XML configuration file;

Profiles displaying (modules);

Networks displaying;

Mappings displaying;

XML file generated from data of the previous sections;

Messages console (Info, Warning, Error).

Profiles displaying

The figure 2 shows the profiles section once a configuration file loaded.
Two buttons let the user to add or delete a profile (in case of deletion, the activated profile will be erased).

A menu let the user to switch between all the available profiles.

A input of text type displays the name of the activated profile. This field lets the user to rename a profile (the
“default” profile cannot be renamed).

The “modules” part displays the modules and their asociated properties (see figure 3).
To help the user who wants to change a property value, a tooltip is associated to each field (see figure 4: it describes
this property, and gives the original default value.

~ Profiles:
4.t Buttons used to add a new profile or to delete the current profile

default test debug Profiles menu to navigate between the different profiles
Current profile” default Name of the displayed profile + button to change his name
¥ Modules:

- ALLOCATOR

» LAUNCHER

» DEBUGGER

TS e Modules loaded for the curre_nt profile. o

» LOW_LEVEL_COMM Each one can be shown or hidden by clicking on the arrow.
> NFC Show a module consists in display all his properties

- OPENMP

» PROFILER

» THREAD

Figure 2: Profile display

¥ ALLOCATOR

.. numa_migration

.. realloc_factar

.. realloc_threashold GB -
- numa
.. sfrict

- keep_mem MB -

* g 08 8 ~O

-~ keep_max PB h

Figure 3: Module display

¥ ALLOCATOR

.. uma_migration [l

.. realloc_factor 2

.. realloc_threashold 50 GB -

- numa If the new segment is smaller of M bytes than threashold, realloc will allocate a new

. sirict B segment, otherwise it will keep the same one. Use 0 to force realloc every time (may be
slower but consume less memory).Default value: S0MB

- keep_mem 500 MB -

- Keep_max a8 PBE -

Figure 4: Tooltip for the 'realloc_threshold’ property

6.2 Networks displaying

The figure 5 shows the networks section once a configuration file loaded. The menu (1) lists all the networks options:
e “CLI options” is the list of all the available values for the —net option of mpcrun;
e “Rails” is the list of all the available rails;
e “Drivers” is the list of all the available drivers.

The editor let the user to add or delete any network option.

¥ Networks:

cLIOPTIONS ® = » CLl options: default
TR Available rails Selected rails
- tep tcp_mpi o ib_mpi -
tcpoib tepoib_mpi ib_signalization i
.. multirail_tcp

- default

vrus®E
.. ib_signalization » Rail: ib_signalization
- tep_mpi name ib_signalization
- tcpoib_mpi
— i device 0
¥ DRVERS ® ©
. ib_config_mpi topology torus
- Ib_config_signalization - config ib_config_signalization ~ [+ 4

tep_config_mpi

- tcpoib_config_mpi

© ©

Figure 5: Networks display

The properties of a given option are displayed in the right part after a double click on the item. The figure 5 shows
the properties for the “default” CLI option and the rail named “ib_signalization”.

6.3 Mappings displaying

The figure 6 shows the mappings section once a configuration file loaded.

¥ Mappings:
TAh Mappingd Mappna1 — Add or delete a mapping, navigate between mappings
Parameters Actions Availabl_e Selec:te_d
Environment ~ MPC_DEBUG = frue ° default =] [debug I
test
Environment ~ MPC_GDB = gdb e
- Select the profiles
- - associated to the _ _
Manage the selectors for the current mapping mapping

Figure 6: Mappings display

As for the profiles section, two buttons let the user to add or delete a mapping. Navigation between the different
mappings is done within the menu.

The table on the left side of the picture lists all the defined selectors for the current mapping. It is also possible to
add or delete a given selector. The other table lists all the profiles that will be loaded if all the selectors are checked.

6.4 The XML generated file

The figure 7 shows the result of the generation of a new XML configuration file using data of the sections “profiles”,
“networks” and “mappings”. The XML code cannot be directly modified through this element. The saving button let
the user to save the file on a local storage: if the generated file does not match to the associated XSD, the saving
will be impossible.

» Generated configuration file:

<?xml wversion="1.0"?>
<mpc xmlns:xsi='http://www.w3.org/2001/XMLSchema-instance' xsi:noNamespaceSchemalocation='mpc-config.xsd'>
<profiles>
<profile>
<name>default</name>
<modules>
<allocator>
cnuma_migratian>false</numﬂ_migratiun>
<realloc factor>Z</realloc_factor>
<realloc threashold»50 GB</realloc_threashold>
<numa>true</numa>
<strict>false</stricts>
<keep_mem>500MB</keep mem>
<keep max>S PB</keep max>
«fallocator>
<launcher>

Save config file

Figure 7: XML generated display

6.5 Messages console
The figure 8 shows the console displaying all the messages (Info, Error, Warning) producing by the editor.

Messages console

[Error] The given config file "config-malformed.xml"™ is not walid.. Abort!
test.xml:274: parser error : Opening and ending tag mismatch: profiles line 3 and mpc
</mpc>

test.xml:276: parser error : Char 0x0 out of allowed range

tesc.xml:276: parser error @ Premature end of data in tag mpc line 2

Figure 8: Messages console

7 Helpful commands

7.1 mpc_print_config

mpc_print_config is a small executable that prints the configuration in different ways:

o XML mode:

e text mode:

© ® N o o s @ N =

To get more information, execute mpc_print_config —--help.

7.2 mpc_edit_config

mpc_edit_config is a small executable that opens the editor. By default, the editor is opened with the first
firefox founded in the user PATH. However, the option ~b or ——browser can be used to specify an other
browser.

	Introduction
	The configuration file structure
	Define a configuration file
	Defining profiles
	Step 1: Define a default profile
	Step 2: Define a profile for debugging

	Mapping profiles

	Configuration test
	Simple execution without parameters
	Execution in debugging mode
	Using the environment variable MPC_DEBUG
	Using the option --profiles of mpcrun
	Using the environment variable MPC_USER_PROFILE

	Simple execution with parameters

	Network configuration
	The configuration editor
	Profiles displaying
	Networks displaying
	Mappings displaying
	The XML generated file
	Messages console

	Helpful commands
	mpc_print_config
	mpc_edit_config

