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ABSTRACT
In the race for Exascale, the advent of many-core proces-
sors will bring a shift in parallel computing architectures
to systems of much higher concurrency, but with a rela-
tively smaller memory per thread. This shift raises concerns
for the adaptability of HPC software, for the current gen-
eration to the brave new world. In this paper, we study
domain splitting on an increasing number of memory areas
as an example problem where negative performance impact
on computation could arise. We identify the specific pa-
rameters that drive scalability for this problem, and then
model the halo-cell ratio on common mesh topologies to
study the memory and communication implications. Such
analysis argues for the use of shared-memory parallelism,
such as with OpenMP, to address the performance prob-
lems that could occur. In contrast, we propose an orig-
inal solution based entirely on MPI programming seman-
tics, while providing the performance advantages of hybrid
parallel programming. Our solution transparently replaces
halo-cells transfers with pointer exchanges when MPI tasks
are running on the same node, effectively removing memory
copies. The results we present demonstrate gains in terms of
memory and computation time on Xeon Phi (compared to
OpenMP-only and MPI-only) using a representative domain
decomposition benchmark.
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1. INTRODUCTION
As supercomputer architectures steadily increase the num-

ber of processing cores, applications developers must adapt
their code to meet new requirements of greater concurrency
and smaller memory availability per core (hence, per thread).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroMPI ’15, September 21-23, 2015, Bordeaux , France
© 2015 ACM. ISBN 978-1-4503-3795-3/15/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2802658.2802669

While power dissipation has constrained the processor clock
frequencies, manycore devices, such as the Intel Xeon Phi
“Knight-Corner” with more than 60 cores and four threads
per core, will require several hundred threads to gain full
performance potential. In this context, applications are fac-
ing a real challenge, being forced to express more paral-
lelism, not only to improve, but also to preserve their cur-
rent level of performance due to lower frequencies. For many
applications, the computation must be decomposed across
a larger number of processing units while limiting memory
and communication overhead. Unfortunately, maintaining
the MPI programming paradigm under these pressures is
difficult. Many developers have resorted instead to hybrid
methods, adopting shared memory parallelism at the node
level. Rewriting applications to use hybrid methods can be
problematic.

In this paper, we study the impact of increasing core count
and decreasing memory per core by looking at simulations
that split a data domain over several distributed computa-
tion units. The common way of addressing such problem is
to rely on halo-cells (or ghost-cells) whose role is to locally
replicate the domain residing in remote memories. While
satisfying computational dependencies, ghost-cells rely on
buffers to mirror remote data, and communications to up-
date state. To analyze the domain decomposition scenario,
we start from the well-known speedup (S) equation, con-
sidering sequential (seq), parallel (par) and communication
(comm) times for a problem of size n on p processing units:

S(n, p) =
seq(n)

par(n, p)
=

seq(n)
seq(n)

p + comm(n, p)
(1)

This simple equation summarizes the scalability challenge.
For a very large p, the speedup for a constant problem
size (strong scaling) is bounded by communications. If the
overhead of communications is canceled, we reach the ideal
speedup of p. However, when problem size increases (weak
scaling), scalability is bounded by the amount of memory
available. This can be illustrated by modeling iso-time exe-
cution for a linearly growing problem size Ps. Starting from
Ps = sp, where s is the memory available per core, we argue
that there will be a parallel overhead requiring a problem
size reduction of scomm in order to be compensated, defin-
ing C(scomm) as the time to compute a size scomm. More
generally, in order to allow weak-scaling, scomm must have a



lower complexity than the problem size, Θ(sp), being there-
fore at most linear, such as Ps = (s−scomm)p with C(scomm)
compensating an overhead independent from p.

It is interesting to see that complex computation requires
less compensation. Consequently, regular domain decompo-
sition involving heavy computation with a constant number
of neighbors is a good candidate for weak-scaling. We chose
this scenario to study for this reason. Considering com-
mon domain decomposition approaches, we first model the
cost associated with halo cells, including hybrid program-
ming as a (compulsory) avenue on current hardware. Then,
we develop a compact MPI abstraction, called MPI_Halo,
that simplifies communication expression, while transpar-
ently providing shared-memory programming advantages to
programs relying solely on the MPI model. MPI_Halo has the
advantage of being close to the MPI semantics with minimal
code modification, while providing the performance charac-
teristics of hybrid computation. Eventually, after describing
related work, the paper concludes with prospects for future
work.

2. THE HALO-CELL MODEL
We consider the problem of modeling the number of halo-

cells for common topological decompositions to illustrate
the challenges associated with scaling domain decomposi-
tion problems to a large number of threads. In particular,
we show that the model argues for a shift from pure MPI
processes to hybrid parallelism when considering memory
constraints. This analysis motivates the contribution of the
MPI_Halo interface as a means to semantically hide hybrid
programming disruption, while retaining its performance.

To model halo-cells, we study classical mesh-based de-
composition in various dimensions. We base our model on
wrapped-around meshes which have a fixed degree for each
node: two in one dimension (1D) (Figure 1(d)), eight in two
dimensions (2D) (Figure 1(e)) and twenty-seven in three di-
mensions (3D) (Figure 1(f)). This property simplifies halo-
cell analysis while providing a valid approximation for un-
wrapped meshes (Figures 1(a), 1(b), 1(c)) where only a node
subset is part of boundaries. In general, to efficiently scale a
problem, the parallelism overhead should remain negligible
when compared to the actual computation. Therefore, in
the case of domain splitting, a good scaling is linked to the
reduction of the number of halo-cells, which impact com-
putation in two ways: (1) communications and (2) domain
duplication (i.e., buffering).

The goal of our modeling for wrapped-around topologies
is to compute the number of cells needed to achieve a given
halo-cell ratio. Figure 2 introduces the method we used to
compute the number of halo-cells. It relies on a character-
istic length l which can be seen as the “side” of the mesh
in function of its dimension. For example, considering a
two-dimensional mesh gathering n cells, l =

√
n. For d di-

mensions, l(n, d) = n
1
d . Thus, it is trivial to compute the

size of the mesh with ghost cells starting from a character-
istic length increased to 2C with C the number of ghost
cell layers (illustrated in red in Figure 2). Then, ghost cell
count Ng is computed by subtracting the size without halo-
cells from the size with halo-cells – yielding the following
equation for wrapped-around meshes:

Ng(n, d) = (l(n, d) + 2C)d − l(n, d)d = (n
1
d + 2C)d − n (2)

Figure 2: Deriving ghost-cell count from the char-
acteristic length (cube-embedding).
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Figure 3: Total number of ghost cells for torus-based
topologies in various dimensions considering an even
split of the number of cells among processes.

Figure 3 shows how Equation 2 can be used to derive the
number of ghost cells as a function of mesh dimension d,
problem size n, and halo-cell layers C, considering p pro-
cesses with a local problem size np computed by evenly di-
viding a global problem size n such as np = n

p
. The 1D-torus

is the only topology with a number of ghost cells indepen-
dent from problem size n. Naturally, when increasing mesh
dimension, the number of halo-cells increases rapidly, requir-
ing bigger problem sizes to achieve a given ghost-cell ratio.

This problem can be illustrated by letting r(p, n, C) =
Ng(p,n,C)

n
, and then expressing n in function of this new

variable to compute the number of cells needed to achieve
a defined ratio. As presented in Figure 4, this ratio has
an expression linear in terms of the number of processes
as global ratio is obtained by reproducing p times a ratio
observed on individual processes. Using these equations,
Figure 5 represents the number of ghost cells needed to
achieve a given ratio, outlining that as torus dimension in-
creases, achieving lower ratios requires more cells. For ex-
ample, if we consider a basic 3D splitting, with one layer of
ghost cells, 2.18 × 108 cells per memory unit are required
to achieve a ratio of 1%. This yield a memory usage of
M(sc, r, p, C) = sc(1 + r) × n(r, p, C) with sc the size of
a cell, or 1.64 GB per memory area for sc = 8 (size of a
double). Compare this value to the memory per core on an
Intel Xeon Phi (KNC): 8 GB for 240 threads, or 34 MB per
thread. Moreover, this figure is clearly optimistic as applica-
tions usually depend on several ghost cell layers with larger
cells, not to mention that memory is partially used by the
runtime and operating system.

Our analysis here shows that memory requirements asso-
ciated with new architectures prevent distributed-memory
models such as MPI to be directly transposed. Indeed, as
demonstrated, subdividing a given mesh in small memory
areas leads to a waste of memory and increases communica-
tion overhead. For this reason, the “scaled MPI” approach
has to be either mixed with another shared-memory model



(a) 1D (b) 2D (c) 3D (d) 1D(W) (e) 2D(W) (f) 3D(W)

Figure 1: Meshes with 4096 nodes, (W) stands for wrapped-around, producing a torus.
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n(r, p, C) 2pC
r

4pC2

r2
(r + 2 + 2

√
1 + r)

2pC3

r3
(r2 + 3r(1 + r)

2
3 + 6r(1 + r)

1
3

+ 9[r + 1 + (1 + r)
2
3 + (1 + r)

1
3 ])

n(1%, p, 1) 200p 1.61× 105p 2.18× 108p

n(1%, p, 2) 400p 6.43× 105p 1.74× 109p

n(1%, p, 3) 600p 1.44× 106p 5.89× 109p

n(10%, p, 1) 20p 1679p 2.37× 105p

n(10%, p, 2) 40p 6716p 1.90× 106p

n(10%, p, 3) 60p 15111p 6.42× 106p

n(50%, p, 1) 4p 79p 2639p
n(50%, p, 2) 8p 317p 21177p
n(50%, p, 3) 16p 712p 71272p

Figure 4: Equations allowing the computation of total number of cells n(r, p) in function of ghost-cell ratio r,
number of processes p and the number of ghost cell layers C.

or abstracted in some other way. Section 5 reviews several
programming models and approaches addressing this issue.
Acknowledging this related research, our work proposes a
possible solution that attempts to remain close to the MPI
programming paradigm.

3. CONTRIBUTION
As modeled in section 2, domain decomposition on a large

number of tasks with reduced memory becomes impracti-
cal due to halo-cells memory and communication overhead.
In such context, MPI applications have adapted to hybrid
model – shared-memory parallelism inside nodes and message-
passing between node. Typically, shared-memory parallelism
is provided by progressively adding OpenMP constructs to
computing loops, interleaving sequential sections between
parallel regions. For large numbers of threads, this can re-
sult in serious performance inefficiencies.

In this paper, we introduce a way of porting MPI applica-
tions to many-core devices based on the MPI halo cells ab-
straction documented in Figure 6. This interface abstracts
halo-cells from their computation, allowing the MPI runtime
to avoid copies when data are available in shared memory.
This way, an existing MPI-based domain decomposition is
transposable to shared-memory with only limited code mod-
ification. Of course, this optimization is available only if
a subset of remote buffers is directly reachable in shared-
memory. One way this could have been done is by gathering
mesh cells in a shared-memory segment mapped in MPI pro-
cesses collocated on the same node, for example thanks to
MPI 3.0 shared memory windows. However, we relied on a
simpler approach by implementing our MPI_Halo interface

in a thread-based MPI. We retained the MPC[15] runtime
which unifies OpenMP and MPI support for Xeon Phi while
providing an integration in both GNU and Intel compilation
chains to automatically privatize global variables. Using this
approach, our MPI_Halo implementation became more flex-
ible – allowing any address to be shared without code mod-
ification (recompilation with the correct flag).

(a) Process-based

(b) MPI_Halo (two nodes 0 and 1, four processes)

Figure 7: Halo-cell buffer comparison between
process-based domain splitting and our node-based
MPI_Halo approach when considering a 1D splitting.

Figure 7 shows our approach to reduce the number of
ghost cell buffers by directly referring to actual data when
reachable in shared memory. It compares process-based
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Figure 5: Ghost cell ratio in function of n for various configurations.

(Figure 7(a)) with our node-based MPI_Halo approach (see
Figure 7(b)), assuming two processes per node). For the
latter, only ghost-cells in-between nodes are required. This
has the effect of reducing the number of halo-cell buffers,
decreasing halo-cell ratio when compared to the classical ap-
proach (Figure 7(a)). Naturally, directly accessing remote
cells is only possible if data remain valid. However, this
kind of dependency is the same as the one arising from local
computation where computing a new cell can not be done in
place due to spatial dependencies, requiring the allocation of
two meshes switched at each time-step, in general. In such
configuration, remote cells remain valid during the whole
time-step, enabling memory savings. Nonetheless, even if
buffer allocation has to be forced due to remote modifica-
tion, the MPI_Halo approach is still advantageous in terms
of code readability and communication scheme validation.

To go further, in the thread-based MPI case, tasks lo-
cated on the same node are running in the same process as
threads and therefore share the same address space, allow-
ing our MPI_Halo approach to work on any buffer. However,
considering an implementation in an MPI 3.0 shared win-
dow, only a subset of the address space of each collocated
process is visible. In complement, the shared segment does
not necessarily start at the same address in each process,
preventing the remote pointer to be sent directly. An im-
plementation would therefore have to send only addresses
relative to the shared-window start address while requiring
memory copies for buffers outside of it (corollary of “out-

side of node” in the thread-based case). This shows that
the MPI_Halo mechanism is compatible with MPI 3.0 shared
windows and therefore with process-based MPI implemen-
tations.

In order to illustrate the advantages of the MPI_Halo ap-
proach versus point-to-point communications, Figure 8 pre-
sents a 1D splitting following Figure 7(b) configuration (re-
tained for conciseness). This code is made of two parts: (1)
line 1 to 16 called once in order to initialize the communi-
cation scheme, and (2) line 19 to 37 illustrating the use of
the MPI_Halo_ex handle to trigger communications.

Initialization first sets up four halo cells containers: two
for local cells and two for remote cells. During this step,
only data-layout and buffer names are provided. Buffers are
bound either locally, when buffers are to be sent, or remotely,
when buffers are to be received. MPI_Halo objects are reg-
istered in an MPI_Halo_ex handler which abstracts a set of
halo-cell exchanges. During this process, remote buffers are
queried by name, greatly simplifying the way buffers are as-
sociated to each other. At this point, MPI runtime knows
both size and dependencies between MPI_Halo handlers. At
line 16, the MPI_Halo_ex object is committed in order to
generate the communication scheme based on pairs of send
and receive. Internally, this process first relies on a reduc-
tion to count the number of incoming requests. Then, each
process registered to a remote buffer sends a request which is
received by the target using MPI_ANY_SOURCE. At this point,
the runtime is able to check whether buffers have the same



MPIX Halo cell init( MPI Halo * h, char * label, MPI Datatype type, int count)
Initializes a halo-cell container with a given data-layout.
MPIX Halo exchange init( MPI Halo ex * ex )

Initializes an empty MPI_Halo_ex object .
MPIX Halo cell bind local( MPI Halo ex ex, MPI Halo h )

Register a halo buffer as local (available for read in remote processes).
MPIX Halo cell bind remote( MPI Halo ex ex, MPI_Halo h, int rank, char * label )

Register a halo buffer as remote (retrieved from a remote process).
MPIX Halo cell set( MPI Halo h, void ** ptr )

Set the buffer pointer inside the MPI Halo object (only possible on local MPI_Halo).
MPIX Halo cell get( MPI Halo h, void ** ptr )

Retrieve the buffer pointer from the MPI_Halo object (only possible on remote MPI_Halo).
MPIX Halo cell is remote( MPI Halo h )

Return true if the MPI_Halo required a buffer allocation (only possible on remote MPI_Halo).
MPIX Halo cell commit( MPI Halo ex ex )

Compute the communication scheme associated with bounded halo-cells.
MPIX Halo iexchange( MPI Halo ex ex )

Triggers MPI_Halo exchanges in a non-blocking fashion.
MPIX Halo iexchange wait( MPI Halo ex ex )

Waits for the end of communications associated with this exchange.
MPIX Halo exchange( MPI Halo ex ex )

Triggers MPI_Halo exchanges in a blocking fashion.
MPIX Halo cell release( MPI Halo * h )

Releases an MPI_Halo object .
MPIX Halo exchange release( MPI Halo ex * ex )

Releases an MPI_Halo_ex object .

Figure 6: Complete MPI_Halo interface developed for this paper.

size, type and if the buffer (selected by name) is available
locally. A meaningful message is generated in case of error.

In the second part, mesh data are registered in local MPI_Halo
during computation. At line 25, the asynchronous exchange
is initiated, generating pairs of send and receive with inde-
pendent tags. Only pointers are transparently exchanged
instead of complete buffers when data are located on the
same node, enabling zero-copy and lowering memory usage.
Then, communications are potentially recovered by compu-
tation before being waited for in line 27. Eventually, pointers
to halo-cells are retrieved from remote MPI_Halo, possibly
returning a direct pointer if data are located on the same
node. Here, zero-copy is possible because we are running
MPI tasks in user-level threads thanks to the MPC run-
time. If not, MPI_Halo will force ghost-cell buffers and fall
back to point to point behavior, while maintaining better
code readability and error checking.

Dealing with the wait call line 27, in our current imple-
mentation it is non-blocking in the sense that it does not
require a complete synchronization between all processes.
The reason for this is that we have two meshes which are
swapped at each time-step, guaranteeing a read only access
until next ghost cell exchange with a local synchronization.
For other patterns, for example write access, other MPI calls
such as MPI Barrier could be used to outline access epochs,
with a potential impact on performance.

In this example, we only presented zero-copy exchanges
for contiguous buffers due to limited space. it is also pos-
sible to optimize non-contiguous communications. In such
cases, local cells would be defined as a derived MPI vector
data-type selecting boundary elements and incoming data
as a contiguous vector (when relying on a halo-cell buffer).
This abstracts the ’packing’ phase. However, when data

can be reached directly (i.e., via shared-memory) they re-
main non-contiguous. In such case, computation must be
able to process both contiguous buffer (no stride, remote
processes) and non-contiguous ones (with a stride, shared-
memory). To do so, the MPI_Halo_cell_is_remote function
can be used to query the kind of buffer being addressed in
order to adapt the computing.

Our MPI_Halo abstraction allows a compact expression of
communications scheme from dependencies between buffers,
enhancing readability while providing dynamic checking. Be-
sides, both buffer allocations and copies can be avoided using
such abstraction. Clearly, there is the potential for perfor-
mance gains in respect to both memory and communica-
tions. These are discussed below.

4. RESULTS
In this section, we measure the gains provided by our

MPI_Halo implementation inside the MPC runtime on an
Intel Xeon Phi 5110P with 60 cores capable of running 4
threads using 8 GB of memory. Thus, each of the 240
threads has 34 MB of memory, making this device very sen-
sitive to the ghost cell problem we previously outlined. In
order to precisely control execution parameters, we decided
to write our own benchmark. We chose a image convolution
problem for both its simplicity and proximity with other
algorithms, like Lattice-Boltzmann which propagates spa-
tial values using similar stencils. Our own code allowed us
to benchmark various number of ghost-cell layers, just by
changing the convolution kernel. To match the temporal
behavior of a simulation code, we ran twenty convolutions,
each of them involving halo-cell exchanges.



1 /*−−−−− I n i t i a l i z a t i o n (Done once ) */
2 MPI_Halo local_left , local_right , left , right ;
3 /* Name C e l l s and prov ide Layout */
4 MPIX_Halo_cell_init ( &local_left , ”Local Le f t ” , MPI_INT , 1024 ) ;
5 MPIX_Halo_cell_init ( &local_right , ”Local Right ” , MPI_INT , 1024 ) ;
6 MPIX_Halo_cell_init ( &left , ”Remote Right ” , MPI_INT , 1024 ) ;
7 MPIX_Halo_cell_init ( &right , ”Remote Le f t ” , MPI_INT , 1024 ) ;
8 /* Bind C e l l s */
9 MPI_Halo_ex ex ;

10 MPIX_Halo_exchange_init ( &ex ) ;
11 MPIX_Halo_cell_bind_local ( ex , local_left ) ;
12 MPIX_Halo_cell_bind_local ( ex , local_right ) ;
13 MPIX_Halo_cell_bind_remote ( ex , right , right_process , ”Local Le f t ” ) ;
14 MPIX_Halo_cell_bind_remote ( ex , left , left_process , ”Local Right ” ) ;
15 /* Generate Communications */
16 MPIX_Halo_exchange_commit ( ex ) ;
17
18 /*−−−−− Compute Loop ( Cal led at each time−s tep ) */
19 whi le ( compute )
20 {
21 /* Reg i s t e r l o c a l c e l l data */
22 MPIX_Halo_cell_set ( local_left , mesh ) ;
23 MPIX_Halo_cell_set ( local_right , right_coll ( mesh ) ) ;
24 /* Star t asynchronous communications */
25 MPIX_Halo_iexchange ( ex ) ;
26 /* . . . Compute mesh cente r . . . */
27 MPIX_Halo_iexchange_wait ( ex ) ;
28 /* Retr i eve Ghost ar rays */
29 i n t * left_ghost , * right_ghost ;
30 MPIX_Halo_cell_get ( left , ( void **)&left_ghost ) ;
31 MPIX_Halo_cell_get ( right , ( void **)&right_ghost ) ;
32 /* . . . Compute mesh boundar ies . . . */
33 /* Swap Meshes */
34 Mesh * tmp = mesh ;
35 mesh = oldmesh ;
36 oldmesh = tmp ;
37 }

Figure 8: Illustration of MPI_Halo interface usage in C.

fn+1(x, y) =

L
2∑

i=−L
2

H
2∑

j=−H
2

Wi,j × fn(x + i, y + j) (3)

By applying Equation 3 to an image f(x, y) with a ker-
nel Wi,j , we are able to model a problem with a controllable
level of spatial dependency that is linked to kernel size. Two
meshes are required to be able to compute fn+1 from fn.
Configuration allowing zero-copy as remote cells are not in-
validated during a given time-step, guaranteeing coherency.
In order to benchmark the halo-cell method, we attempted
to optimize the computation, in particular, completely re-
covering communications with inner domain computation.
We relied on a 1D split to yield the lowest ghost-cell ratio, in
order to benchmark our implementation in the less favorable
spatial configuration. Our benchmark consists in applying
a mean filter twenty times to a three-channel 5616 × 3744
RGB image stored in double precision. The image is evenly
split over processes and ghost cell exchange are done for each
channel. We ran the same code in three configurations: (1)

with our MPI_Halo abstraction, (2) forcing the allocation of
halo-cells buffers to behave as a process-based MPI, and (3)
on a single MPI task using OpenMP-based parallelism on
convolution loops. In each case, we measured computation
time and the overall memory usage.

Figure 9(a) presents the total time spent in computing.
Note that for readability, we merged MPI_Halo curves with
those of process-based MPI (copy), as they were very sim-
ilar (see error bars). This behavior is due to the fact that
communications are completely recovered, mitigating their
impact on performance. In general, the MPI approach has
better performance than the OpenMP one. We believe that
the explicit data splitting enforced by MPI limited NUMA
effects. Moreover, MPI does not incur OpenMP’s fork-join
overhead. However, when more that one thread is running
on each core, OpenMP is less subject to noise and achieves
better performance for certain thread counts. In summary,
our MPI_Halo approach improved performance when com-
pared to OpenMP with one thread per core (less than 60
tasks), but yielded less stable results with more threads.
We believe this is due to the underlying runtime.
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Figure 9: Measurement results for our convolution benchmark.

Figure 9(b) displays the amount of resident memory used
just after computation. All curves describing MPI_Halo were
merged, being very close (see error bars) due to the regu-
lar splitting. We did the same for OpenMP, as data-sets
are identical. It can be seen that even in 1D, there is a non-
negligible difference in terms of memory when systematically
using halo-cells buffers (process-based approach). The dif-
ference increases as expected with the number halo cell lay-
ers. However, it seems that the MPI runtime also uses mem-
ory for each MPI task (1.05 MB per task, verified with a triv-
ial program), mitigating memory gains when compared to

OpenMP. Nonetheless, MPI_Halo successfully removed ghost
cell buffers growing up to to one third of data-set size, saving
a non-negligible amount of memory.

In summary, we shown that our MPI_Halo implementa-
tion actually provides memory gains on a many-core device
when compared to process-based approach. In complement,
we also demonstrated a performance gains due to a better
locality. The most important result is that our approach
succeeds in maintaining the MPI programming model while
transposing application to a many-core device.



5. RELATED WORK
Effective memory management on many-core devices is

tightly linked to efficiently programming an Exascale ma-
chine with billions of threads. In light of memory con-
straints in an exascale environment, programmers have four
different parallelism alternatives[7]: (1) distributed-memory,
(2) shared-memory, (3) accelerators and (4) logical address
spaces.

Distributed-memory approaches are reaching limits on new
many-core hardware as splitting the computation domain
inevitably leads to both communication and memory over-
head, limiting scalability. The Message Passing Interface
is the reference programming model to express distributed-
memory computation. Most MPI implementations provide
optimized intra-node communications by relying on vari-
ous approaches[2]: shared memory segments as in MPICH
Nemesis[3], kernel modules as in KNEM[10], direct copy
for thread-based MPI[8, 15] or even the network interface
card. Our approach differs as we are directly accessing data,
whereas the message passing standard imposes a copy.

Shared-memory programming (e.g., using OpenMP[5],
Cilk[1], Intel TBB, Pthread) is memory-efficient when mem-
ory is physically-shared, but must be coupled (hybridized)
with distributed-memory support (generally MPI) in order
to scale to more than one node. In such context, shared-
memory models limit the number of distributed-memory ar-
eas, and by extension the number of halo-cells. Accelerators
have the advantage of being energy efficient (simpler cores)
while providing important computing power through mod-
els such as Cuda and OpenCL. Nonetheless, the necessity
of transferring the data-set prior to the computation con-
tributes to parallel and memory overhead, requiring careful
memory management (e.g., device caches) and latency hid-
ing to harness the full power of such devices.

Models based on logical-memories emulate a shared-memo-
ry address space on top of a distributed memory one. Par-
titioned Global Adress Space (PGAS) exist either as a lan-
guage (e.g., UPC[11], Co-Array Fortran[14]) or as a library
(e.g., OpenSHMEM [4], Global Arrays[13]). Such models
provide a way of expressing distributed computation as it
would have been done in shared memory, in general by rely-
ing on the Remote Memory Access (RMA) capabilities of the
network interface card. Regarding memory, some PGAS im-
plementation require a temporary buffer cache to efficiently
abstract communications in-between processes[6].

There are several programming models providing both ad-
vantages and constraints when it comes to addressing the
performance factors of the domain decomposition scenario
we are considering for future exascale machines. Clearly, the
most suitable way of programming upcoming architectures
while transitioning an existing code appears to be model
mixing. One challenge such an approach brings is the com-
bination of different runtimes, but it also opens interaction
possibilities in-between models. This paper takes advan-
tage of MPC[15] which is an unified MPI+OpenMP run-
time. Other initiatives such as MVAPICH2-X [11], HMPI[8],
FGMPI[12] also highlight the potential of mixing state of
the art models with new approaches in order to unlock new
parallelism opportunities.

A work close to our current implementation is the owner-
ship passing interface described by Friedley et al.[9]. Using
HMPI, they proposed a compact interface comparable to
send and receive but sending only a pointer when an MPI

process is accessible in shared memory and relying on a nor-
mal copy otherwise. In this paper, we defined an interface
to match buffers two by two while hiding buffer allocation
complexity. Moreover, by construction ghost cell exchanges
involve buffers of the same size. Due to this layout, the allo-
cation is only required when the remote is not accessible in
shared memory. Otherwise, the direct pointer is returned,
meaning that there are no ghost cells, as only a pointer to
the target mesh region is sent. Consequently, our approach
cannot be strictly viewed as ownership passing, for exam-
ple, in Figure 8, local left will always be registered to the
same pointer mesh (current input mesh). Instead, it pro-
vides the remote process with a“view”of current input mesh
left boundary. Approach which in complement of avoiding
copies (pointer transfers) opens the way for memory saving
thanks to buffer aliasing – exchanging buffer views instead
of buffers.

6. CONCLUSION
In this paper, we discuss the scaling problems that can be

expected when porting applications using domain decom-
position to future generation platforms with greater cores
counts and reduced memory per core. The memory and
communication overheads were modeled by analyzing ghost-
cell ratios. Our formula showed that a basic 3D problem
is already too large to reach the 1% ratio on current de-
vices. The general outcome of our analysis is what moti-
vates the use of shared-memory parallelism, and what sug-
gests to many application developers to use hybrid program-
ming methods. In contrast, we introduce the MPI_Halo ab-
straction as a convenient way of describing ghost-cell ex-
changes, using named buffers, triggering all communications
at once, and providing error checking. By abstracting halo-
cells buffers, this method also exposes zero-copy opportuni-
ties when processes are located on the same node. Using
the MPC thread-based MPI implementation, we are able to
take advantage of MPI_Halo, achieving performance gains
on a representative benchmark. Not only memory savings
are possible when compared to classical process-based split-
ting, but computation time is better than OpenMP due to
the locality enforced by the MPI model. In conclusion, our
MPI_Halo approach can be used to port pure MPI appli-
cations to many-core devices with high performance, while
retaining the opportunity for hybrid parallelism improve-
ments.

7. FUTURE WORK
MPI is a parallel programming model known by all HPC

developers. Our future work will continue to investigate po-
tential MPI model extensions for shared-memory. Indeed,
as the standard allows tasks to be run in threads, we believe
that new approaches can be developed to run MPI applica-
tions on many-core devices. Our plan is to pursue ideas in-
volving topological communicators and hybrid work-sharing
constructs.
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